Exercice 1 (10 points)

Partie A

La fonction g est définie sur \mathbb{R} par $g(x) = 2e^x + 2x - 7$

- 1) Etudier les limites de g en $+\infty$ et en $-\infty$
- 2) Etudier le sens de variation de g sur \mathbb{R} et dresser son tableau de variations
- 3) Justifier que l'équation g(x) = 0 admet dans $\mathbb R$ une unique solution a puis que 0.94 < a < 0.941
- 4) En déduire le signe de g sur \mathbb{R} .

Partie B

La fonction f est définie sur \mathbb{R} par : $f(x) = (2x - 5)(1 - e^{-x})$. On note C sa courbe représentative dans un repère orthonormal $(0; \vec{\imath}; \vec{\jmath})$.

- 1) Etudier le signe de f sur \mathbb{R}
- 2) Déterminer les limites de f en $+\infty$ et en $-\infty$
- 3) Calculer f'(x) et vérifier que f'(x) et g(x) ont le même signe . Dresser le tableau de variations de f
- 4) a) Démontrer l'égalité:

$$f(a) = \frac{(2a-5)^2}{2a-7}$$

- b) Donner une valeur approchée de f(a) à 0,01 près.
- 5) Tracer C (unité graphique 2 cm)

Exercice 2 (10 points)

Partie A

On considère la suite (u_n) définie par : $u_0 = 2$ et pour tout entier naturel n :

$$u_{n+1} = \frac{1 + 3u_n}{3 + u_n}$$

On admet que tous les termes de cette suite sont définis et strictement positifs .

- 1) Démontrer par récurrence que, pour tout entier naturel n , on a : $u_n > 1$
- 2) a) Etablir que , pour tout entier naturel n , on a :

$$u_{n+1} - u_n = \frac{(1 - u_n)(1 + u_n)}{3 + u_n}$$

- b) Déterminer le sens de variation de la suite (u_n)
- c) En déduire que la suite (u_n) converge .

Mathématiques

Partie B

On considère la suite (u_n) définie par : : $u_0 = 2$ et pour tout entier naturel n :

$$u_{n+1} = \frac{1 + 0.5u_n}{0.5 + u_n}$$

On admet que tous les termes de cette suite sont définis et strictement positifs .

1) On considère l'algorithme suivant :

Entrée	Soit un entier naturel non nul n
Initialisation	Affecter à u la valeur 2
Traitement et sortie	Pour i allant de 1 à n
	Affecter à u la valeur $\frac{1+0.5u}{0.5+u}$
	Afficher u
	Fin pour

Reproduire et compléter le tableau suivant , en faisant fonctionner cet algorithme pour n=3. Les valeurs de u seront arrondies au millième .

i	1	2	3
u			

2) Pour n = 12, on a prolongé le tableau précédent et on a obtenu :

	,				1				
i	4	5	6	7	8	9	10	11	12
u	1,0083	0,9973	1,0009	0,9997	1,0001	0,99997	1,00001	0,999996	1,000001

Conjecturer le comportement de la suite (u_n) à l'infini

3) On considère la suite (v_n) définie pour tout entier naturel n, par :

$$v_n = \frac{u_n - 1}{u_n + 1}$$

- a) Démontrer que la suite (v_n) est géométrique de raison $-\frac{1}{3}$
- b) Calculer v_0 puis écrire v_n en fonction de n
- 4) a) Montrer que pour tout entier naturel n , on a : $v_n \neq 1$
 - b) Montrer que, pour tout entier naturel n, on a:

$$u_n = \frac{1 + v_n}{1 - v_n}$$

c) Déterminer la limite de la suite (u_n)