Mathématiques

NOM Prénom

Exercice 1 (6 points)

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = x^3 - 5x + 2$$

- 1) Etudier les variations de f
- 2) Déterminer a et b tels que : $f(x) = (x-2)(x^2 + ax + b)$
- 3) En déduire les solutions de l'équation f(x) > 0
- 4) Tracer la courbe de f sur [-3; 3]

Exercice 2 (6 points)

La bibliothèque municipale étant devenue trop petite, une commune a décidé d'ouvrir une médiathèque qui pourra contenir 100 000 ouvrages au total. Pour l'ouverture prévue le 1^{er} janvier 2013,la médiathèque dispose du stock de 35000 ouvrages de l'ancienne bibliothèque augmenté de 7000 ouvrages supplémentaires neufs offerts par la commune.

Partie A

Chaque année, la bibliothécaire est chargée de supprimer 5% des ouvrages, trop vieux ou abîmés, et d'acheter 6000 ouvrages neufs. On appelle u_n le nombre, en milliers, d'ouvrages disponibles le 1^{er} janvier de l'année (2013+n). On donne $u_0 = 42$.

- 1) Exprimer u_{n+1} en fonction de u_n
- 2) On propose, ci-dessous, un algorithme, en langage naturel. Expliquer ce que permet de calculer cet algorithme.

```
Variables: U, N  
Initialisation: Mettre 42 dans U  
Mettre 0 dans N  
Traitement: Tant que U < 100  
U prend la valeur U \times 0.95 + 6  
N prend la valeur N + 1  
Fin du Tant que  
Sortie  
Afficher N.
```

3) À l'aide de votre calculatrice, déterminer le résultat obtenu grâce à cet algorithme.

Partie B

La commune doit finalement revoir ses dépenses à la baisse, elle ne pourra financer que 4 000 nouveaux ouvrages par an au lieu des 6 000 prévus.

On appelle v_n le nombre, en milliers, d'ouvrages disponibles le 1^{er} janvier de l'année (2013+n).

- 1) Identifier et écrire la ligne qu'il faut modifier dans l'algorithme pour prendre en compte ce changement.
- 2) On admet que $v_{n+1} = 0.95v_n + 4$ avec $v_0 = 42$

On considère la suite (w_n) définie, pour tout entier n, par $w_n = v_n - 80$.

Montrer que (w_n) est une suite géométrique de raison q = 0.95 et préciser son premier terme w_0 .

Mathématiques

3) Exprimer w_n en fonction de n .

Exercice 3 (8 points)

On définit la suite (u_n) pour tout entier naturel par :

$$\begin{cases} u_0 = 0.5 \\ u_{n+1} = \frac{3u_n + 2}{u_n + 3} \end{cases}$$

On définit la fonction f sur [0; +∞[par :

$$f(x) = \frac{3x+2}{x+3}$$

- 1) Etudier les variations de f
- 2) Résoudre f(x) = x
- 3) Sur l'annexe , on a représenté la courbe de f et la droite d'équation y = x. Placer u_0 ; u_1 ; u_2 et u_3 sur l'axe des abscisses en laissant les traits de construction apparents .
- 4) Conjecturer les variations de la suite (u_n)
- 5) On admet que $u_n < \sqrt{2}$. Démontrer votre conjecture
- 6) On définit maintenant la suite (v_n) par :

$$v_n = \frac{u_n + \sqrt{2}}{u_n - \sqrt{2}}$$

Montrer que la suite (v_n) est géométrique . Préciser la raison et le premier terme

7) Exprimer v_n en fonction de n puis en déduire l'expression de u_n en fonction de n

