corrigé DS 5

On dit qu'un entier naturel non nul N est un nombre triangulaire s'il existe un entier naturel n tel que : $N = 1 + 2 + \ldots + n$.

Partie A: nombres triangulaires et carrés d'entiers

- 1. $36 = \frac{72}{2} = \frac{8 \times 9}{2} = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8$ donc 36 est un nombre triangulaire. De plus, $36 = 6^2$.
- 2. (a) $1+2+\ldots+n=p^2\iff \frac{n(n+1)}{2}=p^2\iff n(n+1)=2p^2\iff n^2+n-2p^2=0.$ Donc le nombre $1+2+\ldots+n$ est le carré d'un entier si et seulement s'il existe un entier naturel p tel que : $n^2+n-2p^2=0.$
 - (b) $n^2 + n 2p^2 = 0 \iff 4n^2 + 4n 8p^2 = 0 \iff 4n^2 + 4n + 1 8p^2 = 1 \iff (2n+1)^2 8p^2 = 1$ Donc le nombre $1+2+\ldots+n$ est le carré d'un entier si et seulement s'il existe

Partie B : étude de l'équation diophantienne associée

On considère (E) l'équation diophantienne $x^2 - 8y^2 = 1$, où $x \in \mathbb{N}$ et $y \in \mathbb{N}$.

un entier naturel p tel que : $(2n+1)^2 - 8p^2 = 1$.

- 1. Deux couples solution sont, par exemple, (3; 1) et (1; 0).
- Soit (x; y) un couple d'entiers relatifs non nuls (x; y) solution de (E).
 Soit d un diviseur commun à x et y.
 Alors d divise x², y², 8y² et donc d divise x² 8y² donc d divise 1.
 On en déduit que d = 1 ou d = -1 ce qui veut dire que x et y sont premiers entre eux.

Partie C: lien avec le calcul matriciel

Soit x et y deux entiers relatifs. On considère la matrice $A = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix}$. On définit les entiers relatifs x' et y' par l'égalité : $\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$.

1.
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3x + 8y \\ x + 3y \end{pmatrix} \iff \begin{cases} x' = 3x + 8y \\ y' = x + 3y \end{cases}$$

2. La matrice A a un déterminant égal à 1, donc non nul, donc elle admet une matrice inverse A^{-1} .

1

corrigé DS 5

Pour déterminer A^{-1} on peut chercher la matrice carrée $A' = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et résoudre le système de 4 équations à 4 inconnues $A \times A' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; enfin il faut vérifier que $A' \times A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

On peut également déterminer A^{-1} à la calculatrice et on trouve: $A^{-1} = \begin{pmatrix} 3 & -8 \\ -1 & 3 \end{pmatrix}$.

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} \iff A^{-1} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} 3 & -8 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{pmatrix} 3x' - 8y' \\ -x' + 3y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \iff \begin{cases} x = 3x' - 8y' \\ y = -x' + 3y' \end{cases}$$

- 3. (x ; y) est solution de (E) $\iff x^2 8y^2 = 1$ $\iff (3x' - 8y')^2 - 8(-x' + 3y')^2 = 1$ $\iff 9x'^2 - 48x'y' + 64y'^2 - 8(x'^2 - 6x'y' + 9y'^2) = 1$ $\iff 9x'^2 - 48x'y' + 64y'^2 - 8x'^2 + 48x'y' - 72y'^2 = 1$ $\iff x'^2 - 8y'^2 = 1$ $\iff (x' ; y')$ est solution de (E)
- 4. On considère les suites (x_n) et (y_n) définies par $x_0 = 3$, $y_0 = 1$ et, pour tout entier naturel n, $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$.

Soit \mathcal{P}_n la propriété: $(x_n; y_n)$ est solution de (E).

• Pour n = 0: $x_0 = 3$ et $y_0 = 1$ donc $x_0^2 - 8y_0^2 = 9 - 8 = 1$ donc $(x_0; y_0)$ est solution de (E).

La propriété est vraie au rang 0.

• On suppose que la propriété est vraie à un rang p ($p \ge 0$) c'est-à-dire que (x_p ; y_p) est solution de (E); c'est l'hypothèse de récurrence.

On veut démontrer que $(x_{p+1}; y_{p+1})$ est solution de (E).

On a vu dans la question précédente que si (x; y) était solution de (E), alors (x'; y') défini par $\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$ est aussi solution de (E).

Comme $(x_n; y_n)$ est solution de (E), on peut dire que $(x_{n+1}; y_{n+1})$ est solution de (E) puisque $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = A \begin{pmatrix} x_n \\ y_n \end{pmatrix}$. Donc la propriété est vraie au rang p+1.

ullet La propriété est vraie au rang 0; elle est héréditaire. Donc elle est vraie pour tout n.

Pour tout entier naturel n, le couple $(x_n; y_n)$ est solution de (E).

Partie D: retour au problème initial

On cherche un nombre triangulaire supérieur à 2015 qui est le carré d'un entier.

• On cherche n entier naturel tel que: $1+2+3+\ldots+n \le 2015$. Ce qui équivaut à $\frac{n(n+1)}{2} \ge 2015 \iff n^2+n-4030 \ge 0$.

L'équation $x^2 + x - 4030 = 0$ a pour solutions $\frac{-1 - 2\sqrt{329}}{2} \approx -63,98$ et $\frac{-1 + 2\sqrt{329}}{2} \approx 62,98$.

Pour que le nombre triangulaire soit supérieur à 2015, il faut que $n \ge 63$.

- Dans la partie **A** on a vu qu'un nombre triangulaire 1 + 2 + ... + n était un carré si et seulement s'il existait un entier p tel que $(2n+1)^2 8p^2 = 1$.
- Dans la partie **C** on a déterminé une suite de couples $(x_n; y_n)$ qui étaient tous solutions de l'équation $x^2 8y^2 = 1$.
- On va donc chercher $n \ge 63$ tel que $(2n+1)^2 8p^2 = 1$; si $n \ge 63$, alors $2n+1 \ge 127$. Ce qui revient à chercher les couples $(x_n; y_n)$ solutions de (E) avec $x_n \ge 127$.
- En partant de $\binom{3}{1}$ et en multipliant successivement par la matrice A, on trouve comme solutions $\binom{17}{6}$, $\binom{99}{35}$, $\binom{577}{204}$...
- $577 = 2 \times 288 + 1$ donc un nombre triangulaire supérieur à 2015 est $1 + 2 + 3 + \ldots + 288 = \frac{288 \times 289}{2} = 41616$.
- On peut vérifier que $41616 = 204^2$ (résultat en conformité avec la question **A. 2. a.**).