Enoncé pour les loups

Exercice 1

- 1. On donne la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{x+1}{x+2}$.
 - (a) Etudier les variations de f
 - (b) Montrer que pour tout $x \in [0; 1]$, on a : 0 < f(x) < 1
- 2. On donne la suite (u_n) définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{u_n + 1}{u_n + 2}$.
 - (a) Montrer par récurrence que pour tout n , $0 < u_n < 1$
 - (b) Montrer par récurrence que la suite (u_n) est croissante .

Exercice 2

On donne la suite (u_n) définie par $u_1 = 1$ et $u_{n+1} = \frac{u_n}{u_n + 1}$

- 1. Calculer les premiers termes de la suite
- 2. Conjecturer l'expression de u_n en fonction de n
- 3. Démontrer la conjecture.

Enoncé pour les lions

Exercice 1

On donne la suite (u_n) définie par $u_0 = 0$ et $u_{n+1} = u_n + n$

- 1. Calculer les premiers termes de la suite
- 2. Conjecturer l'expression de u_n en fonction de n
- 3. Démontrer la conjecture.

Exercice 2

En 2015, Miguel a planté 20 orchidées dans son jardin. Grâce à la pollinisation, il sait que le nombre d'orchidées va doubler chaque année; par ailleurs, il a décidé qu'il planterait lui-même 5 orchidées supplémentaires chaque année.

On considère la suite (p_n) donnant le nombre d'orchidées dans le jardin de Miguel en 2015+n. Déterminer l'expression de p_n en fonction de n. (on pourra utiliser la suite $u_n=p_n+5$)