Exercices sur les différents types de raisonnements

Pour tous ces exercices, faire l'effort d'appliquer le raisonnement demandé

Exercice 1

Montrer par disjonction des cas que pour tout n, n(n+1) est un entier pair

Exercice 2

- 1) Montrer en utilisant la contraposée que si 7 divise x² + y² alors 7 divise x et 7 divise y
- 2) Reprendre la démonstration précédente mais en utilisant un raisonnement par l'absurde

Exercice 3

Montrer par disjonction des cas que pour tout entier naturel n non nul, $n^{10} \equiv 1[11]$

Exercice 4

- 1) Montrer en utilisant la contraposée que si pour tout n , $x^2 + y^2 + z^2 \equiv -1[2^n]$ alors x , y et z sont soit tous les trois impairs soit deux sont pairs .
- 2) Reprendre la démonstration précédente mais en utilisant un raisonnement par l'absurde

Exercice 5

Montrer par disjonction des cas que pour tout n , 3 divise $2^{2n} - 1$

Exercice 6

Montrer par les trois raisonnements que si $a^2 + 9 = 2^n$ alors a est impair.

Corrigé

Exercice 1

Première rédaction possible :

Tous les entiers peuvent se séparer en deux parties : les pairs et les impairs.

On va donc d'abord étudier le cas n pair : n = 2k et donc $n(n+1) = 2k(2k+1) = 2(2k^2+k)$ pair

Si n impair : n = 2k + 1 donc n(n+1) = (2k+1)(2k+2) = 2(2k+1)(k+1) pair

Deuxième rédaction possible :

La disjonction des cas peut aussi se présenter en travaillant modulo 2

N	0	1
N(N+1)	0	2≡ 0

Pour les deux cas étudiés, le résultat donne un reste nul donc n(n+1) est divisible par 2

Exercice 2

1) La contraposée de la proposition est : si 7 ne divise pas x ou ne divise pas y alors 7 ne divise pas $x^2 + y^2$.

Supposons donc que 7 ne divise pas x alors en travaillant modulo 7, on a la table suivante

X	1	2	3	4	5	6
X ²	1	4	2	2	4	1

Toujours modulo 7

1003001511	1 objects means ,							
Y	0	1	2	3	4	5	6	
Y ²	0	1	4	2	2	4	1	

On a donc comme possibilités pour $x^2 + y^2$:

Y ² /X ²	1	2	4
0	1	2	4
1	2	3	5
2	3	4	6
4	5	6	1

Et donc $x^2 + y^2 \not\equiv 0$ [7]

Donc 7 ne divise pas $x^2 + y^2$

2) Supposons que 7 divise $x^2 + y^2$ et que 7 ne divise pas x . Alors $x^2 + y^2 \equiv 0$ [7] $donc \ x^2 \equiv -y^2$ [7] . Puisque 7 ne divise pas x , 7 ne divise pas x^2 et donc 7 ne divise pas y^2 . On fait une table de

Exercices sur les différents types de raisonnements

congruences modulo 7 sans les valeurs 0 et on remarque que $x^2 + y^2$ n'aura pas 0 en reste . Contradiction .

Remarque : ces deux raisonnements ne sont pas ici les plus performants : le plus simple , faire une table de congruence croisée : les x et leurs carrés en ligne ; les y et leurs carrés en colonne et le croisement est $x^2 + y^2$

	X	0	1	2	3	4	5	6
Y	Y ² // X ²	0	1	4	2	2	4	1
0	0	0	1	4	2	2	4	1
1	1	1	2	5	3	3	5	2
2	4	4	5	1	6	6	1	5
3	2	2	3	6	4	4	6	3
4	2	2	3	6	4	4	6	3
5	4	4	5	1	6	6	1	5
6	1	1	2	5	3	3	5	2

Les seules valeurs de x et y qui donnent $x^2 + y^2 \equiv 0$ sont $x \equiv y \equiv 0$ [7] .Donc 7 divise $x^2 + y^2$ si et seulement si 7 divise x et y .

Exercice 3

On va travailler modulo 11

N	1	2	3	4	5	6	7	8	9	10
N^{10}	1	1	1	1	1	1	1	1	1	1

Exercice 4

1) La contraposée est : si x et y impairs et z pair alors il existe un n tel que $x^2 + y^2 + z^2 \not\equiv -1[2^n]$ (on peut prendre deux parmi x , y et z impairs)

On a
$$x = 2k + 1$$
, $y = 2k' + 1$ et $z^2 = 2p$ donc $x^2 + y^2 + z^2 = 4k^2 + 4k + 2 + 4k'^2 + 4k' + 4p^2 \equiv 0$ [2]

Or 0 et -1 ne sont pas congrus modulo 2 donc $x^2 + y^2 + z^2 \not\equiv -1[2^n]$ pour n = 1

2) On suppose que $x^2 + y^2 + z^2 \equiv -1[2^n]$ pour tout n et que deux des entiers sont impairs et deux seulement : x et y . Alors $1 + 1 + z^2 \equiv -1[2]$ et donc $z^2 \equiv -1[2] \equiv 1[2]$ donc z impair . Contradiction .

Exercice 5

On a
$$2^2 = 4 \equiv 1[3]$$
 donc $2^{2n} \equiv 1[3]$ et $2^{2n} - 1 \equiv 0[3]$

Ici, il n'y a pas besoin de distinguer plusieurs cas, le seul cas est valable pour tout n

Exercice 6

1) Par contraposée : la contraposée est si a pair alors $a^2 + 9 \neq 2^n$

Si a est pair alors a^2 est pair donc $a^2 + 9$ est impair; or 2^n est pair. Donc $a^2 + 9 \neq 2^n$

- 2) Par l'absurde : supposons $a^2 + 9 = 2^n$ et a pair . Alors $9 = 2^n a^2$ pair contradiction
- 3) Par disjonction des cas:

On travaille modulo 2

A	0	1
A ² +9	1	0
2^n	0	0

On a l'égalité uniquement si a congru à 1 modulo 2 donc si a impair