Les conjugués 1

A retenir

Soient z et z' deux nombres complexes . Alors on a :

1.
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

$$2. \ \overline{zz'} = \overline{z}\overline{z'}$$

1.
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

2. $\overline{zz'} = \overline{z}\overline{z'}$
3. $\frac{\overline{z}}{\overline{z'}} = \overline{\left(\frac{z}{z'}\right)}$
4. $z + \overline{z} = 2Re(z)$
5. $z - \overline{z} = 2iIm(z)$
6. $\overline{\overline{z}} = z$

4.
$$z + \overline{z} = 2Re(z)$$

5.
$$z - \overline{z} = 2iIm(z)$$

6.
$$\overline{\overline{z}} = z$$

7. Si
$$z = x + iy$$
 alors $z\overline{z} = x^2 + y^2$

Le principe

Pour toutes ces démonstrations, on va écrire z et z' sous forme algébrique : z = x + iy et z' = x' + iy'

Les démonstrations

1.
$$\overline{z+z'} = \overline{x+x'+i(y+y')} = x+x'-i(y+y') = x-iy+x'-iy' = \overline{z}+\overline{z'}$$

2.
$$\overline{zz'} = \overline{(x+iy)(x'+iy')} = \overline{xx'-yy'+i(xy'+x'y)} = xx'-yy'-i(xy'+x'y)$$

De plus, $\overline{z}\overline{z'} = \overline{x+iy} \times \overline{x'+iy'} = (x-iy)(x'-iy') = xx'-yy'-ixy'-ixy'$
On a donc bien: $\overline{zz'} = \overline{z}\overline{z'}$

3. Par la relation précédente :
$$\overline{\left(\frac{z}{z'}\right)} \times \overline{z'} = \overline{\left(\frac{z}{z'}\right)} \times z' = \overline{z}$$
 donc $\overline{\frac{z}{z'}} = \overline{\left(\frac{z}{z'}\right)}$

1

$$4. \ z + \overline{z} = x + iy + x - iy = 2x$$

5.
$$z - \overline{z} = x + iy - (x - iy) = x + iy - x + iy = 2iy$$

$$6. \ \overline{\overline{z}} = \overline{x - iy} = x + iy = z$$

7.
$$z\overline{z} = (x+iy)(x-iy) = x^2 - (iy)^2 = x^2 - i^2y^2 = x^2 + y^2$$

Démonstrations nombres complexes

2 Les modules

A retenir

Soient z et z' deux nombres complexes :

1.
$$z\overline{z} = |z|^2$$

$$2. |\overline{z}| = |z|$$

3.
$$|zz'| = |z||z'|$$

$$4. \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

5.
$$|z^n| = |z|^n$$
 pour n entier naturel

Le principe

On utilise la définition du module pour les trois premières puis la troisième pour démontrer les deux dernières

Les démonstrations

1. On pose z=x+iy . On a par définition : $|z|=\sqrt{x^2+y^2}$ De plus , $z\overline{z}=(x+iy)(x-iy)=x^2+y^2$

2.
$$|z| = \sqrt{x^2 + y^2}$$

 $|\overline{z}| = |x - iy| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2}$

- 3. $|zz'| = |(x+iy)(x'+iy')| = |xx'-yy'+i(x'y+xy')| = \sqrt{(xx'-yy')^2 + (x'y+xy')^2} = \sqrt{(xx')^2 + (yy')^2 + (x'y)^2 + (xy')^2}$ De plus: $|z||z'| = \sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2} = \sqrt{(xx')^2 + (xy')^2 + (yx')^2 + (yy')^2}$ Donc |zz'| = |z||z'|
- 4. Par la relation précédente : $\left|\frac{z}{z'}\right| \times |z'| = \left|\frac{z}{z'} \times z'\right| = |z|$ Donc : $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$
- 5. On va démontrer cette relation par récurrence .

Initialisation : Pour n = 1 , |z| = |z|

Hérédité : On suppose que pour un n donné , $|z^n|=|z|^n$.

Alors $|z^{n+1}| = |z^n \times z| = |z^n||z|$ par la troisième relation. De plus par l'hypothèse de récurrence, on a : $|z^n||z| = |z|^n|z| = |z|^{n+1}$.

Conclusion , $|z^n| = |z|^n$ pour tout n .

3 Les arguments

A retenir

Soient z et z' deux nombres complexes .

1.
$$arg(zz') = arg(z) + arg(z') + 2k\pi$$

1.
$$arg(zz') = arg(z) + arg(z') + 2k\pi$$

2. $arg\left(\frac{z}{z'}\right) = arg(z) - arg(z') + 2k\pi$
3. $arg(z^n) = narg(z) + 2k\pi$

3.
$$arg(z^n) = narg(z) + 2k\pi$$

4.
$$arg(\overline{z}) = -arg(z) + 2k\pi$$

Le principe

On revient à la définition de l'argument et on utilise les formules de trigonométrie qu'il faut donc bien connaître pour la première. Les autres en découlent.

La première démonstration : la plus technique

Nous allons procéder avec la définition de l'argument.

- Notations : Soit z = x + iy tel que $arg(z) = \theta$. Soit z' = x' + iy' tel que $arg(z') = \theta'$. Soit u = a + ib tel que u = zz'. On pose $arg(u) = \alpha$
- But : Montrer que $arq(u) = \theta + \theta'$
- Traduction avec les affixes : $u = zz' \iff (x+iy)(x'+iy') = a+ib$ $\iff xx'-yy'+i(xy'+x'y) = a+ib \iff a = xx'-yy'etb = xy'+x'y$
- Traduction avec les arguments : $cos(\theta) = \frac{x}{|z|}$ et $sin(\theta) = \frac{y}{|z|}$ $cos(\theta') = \frac{x'}{|z'|}$ et $sin(\theta') = \frac{y'}{|z'|}$ $cos(\alpha) = \frac{a}{|u|} = \frac{xx' - yy'}{|z||z'|} \text{ et } sin(\alpha) = \frac{b}{|u|} = \frac{xy' + x'y}{|z||z'|}$
- Première formule à démontrer $:cos(\theta + \theta') = cos(\alpha) = \frac{xx' yy'}{|z||z'|}$: $cos(\theta + \theta') = cos(\theta)cos(\theta') - sin(\theta)sin(\theta')$ Donc $|z||z'|cos(\theta + \theta') = |z|cos(\theta)|z'|cos(\theta') - |z|sin(\theta)|z'|sin(\theta') = xx' - yy'$ Donc $cos(\alpha) = cos(\theta + \theta')$
- Deuxième formule à démontrer : $sin(\theta + \theta') = sin(\alpha) = \frac{xy' + x'y}{|z||z'|}$: $sin(\theta + \theta') = sin(\theta)cos(\theta') + cos(\theta)sin(\theta')$

Démonstrations nombres complexes

Donc
$$|z||z'|sin(\theta + \theta') = |z|sin(\theta)|z'|cos(\theta') + |z|cos(\theta)|z'|sin(\theta') = yx' + xy'$$

Donc $sin(\alpha) = sin(\theta + \theta')$

• On a donc $\alpha = \theta + \theta' + 2k\pi$

```
Attention
cos(\theta + \theta') = cos(\theta)cos(\theta') - sin(\theta)sin(\theta')
cos(\theta - \theta') = cos(\theta)cos(\theta') + sin(\theta)sin(\theta')
sin(\theta + \theta') = sin(\theta)cos(\theta') + cos(\theta)sin(\theta')
sin(\theta - \theta') = sin(\theta)cos(\theta') - cos(\theta)sin(\theta')
```

Une autre version de la première démonstration

On utilise l'écriture trigonométrique : ce sont les mêmes calculs mais la présentation gagne en élégance.

Les autres démonstrations

- $arg\left(\frac{z}{z'}\times z'\right)=arg\left(\frac{z}{z'}\right)+arg(z')$ par la formule précédente donc $arg(z) = arg\left(\frac{z'}{z'}\right) + arg(z')$
- On procède par récurrence . Initialisation : arg(z) = arg(z) Vrai au rang n = 1 Hérédité : On suppose que pour un n donné , $arg(z^n) = narg(z)$. $arg(z^{n+1}) = arg(z^n z) = arg(z^n) + arg(z) = narg(z) + arg(z) = (n+1)arg(z)$
- Posons z = x + iy avec $arg(z) = \theta$ alors $\overline{z} = x iy$. Posons $arg(\overline{z}) = \theta'$. $x = |z|\cos(\theta)$ et $y = |z|\sin(\theta)$. On a alors $-y = -|z|\sin(\theta) = |z|\sin(-\theta)$ donc $cos(\theta') = cos(\theta) = cos(-\theta)$ et $sin(\theta') = sin(-\theta)$ donc $\theta' = -\theta$

Angles et longueurs

A retenir

Soient $A(x_A; y_A)$ d'affixe a , $B(x_B, y_B)$ d'affixe b et $C(x_C; y_C)$ d'affixe c alors :

$$1. \ AB = |b - a|$$

1.
$$AB = |b - a|$$

2. $(\overrightarrow{u}; \overrightarrow{AB}) = arg(b - a) + 2k\pi$

3.
$$(\overrightarrow{AB}; \overrightarrow{AC}) = arg\left(\frac{c-a}{b-a}\right) + 2k\pi$$

Le principe

On utilise les définitions .

Les démonstrations

- 1. $z_{\overrightarrow{AB}} = b a = (x_B x_A) + i(y_B y_A)$ $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = |b - a|$
- 2. Soit un point M d'affixe z tel que $\overrightarrow{OM} = \overrightarrow{AB}$. Par définition , $arg(z) = (\overrightarrow{u}; \overrightarrow{OM})$. Or z 0 = b a donc $arg(z) = arg(b a) = (\overrightarrow{u}; \overrightarrow{OM}) = (\overrightarrow{u}; \overrightarrow{AB})$
- 3. $(\overrightarrow{AB}; \overrightarrow{AC}) = (\overrightarrow{AB}; \overrightarrow{u}) + (\overrightarrow{u}; \overrightarrow{AC})$ $= -(\overrightarrow{u}; \overrightarrow{AB}) + (\overrightarrow{u}; \overrightarrow{AC}) =$ **Donc**: $-arg(b-a) + arg(c-a) = arg(\frac{c-a}{b-a})$

Réel ou imaginaire pur

A retenir

- 1. z est réel si et seulement si $z = \overline{z}$
 - $\bullet\,$ z est imaginaire pur si et seulement si $z=-\overline{z}$
- 2. z est réel si et seulement si $arg(z) = k\pi$
 - \bullet z est imaginaire pur si et seulement si $arg(z)=\frac{\pi}{2}+k\pi$

Le principe

On utilise simplement les définitions .

Les démonstrations

- 1. Soit z = x + iy. Alors : $z = \overline{z} \iff x + iy = x iy \iff 2iy = 0 \iff y = 0 \iff \mathbf{z} \text{ réel}$.
 - $z = -\overline{z} \iff x + iy = -x + iy \iff 2x = 0 \iff x = 0 \iff \mathbf{z}$ imaginaire pur
- 2. Soit $z = re^{i\theta}$ avec r réel positif . Alors : $arg(z) = k\pi \iff z = re^{ik\pi} = \pm r \iff$ **z réel**
 - $arg(z) = \frac{\pi}{2} + k\pi \iff z = r(\pm i] = \pm ir \iff$ **z** est imaginaire pur

Démonstrations nombres complexes

La forme exponentielle

A retenir

- 1. $|e^{i\theta}| = 1$ 2. $arg(e^{i\theta}) = \theta + 2k\pi$ 3. $e^{i\theta}e^{i\theta'} = e^{i(\theta+\theta')}$ 4. $\overline{e^{i\theta}} = e^{-i\theta}$ 5. Formule de Moivre : $e^{in\theta} = (e^{i\theta})^n$
- 6. Formules d'Euler : $cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $sin\theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$

Le principe

On utilise les propriétés précédentes et la définition de l'écriture exponentielle : $e^{i\theta} = \cos\theta + i\sin\theta$.

Les démonstrations

- 1. $|e^{i\theta}| = \sqrt{\cos^2\theta + \sin^2\theta} = \sqrt{1} = 1$
- 2. C'est la définition de l'écriture trigonométrique.
- 3. Soient $z = e^{i\theta}$ et $z' = e^{i\theta'}$ alors $arg(zz') = argz + argz' = \theta + \theta'$. De plus , |zz'| = |z||z'| = 1 Donc $zz' = 1e^{i(\theta + \theta')}$
- 4. Soit $z = e^{i\theta}$, alors $|\overline{z}| = |z| = 1$ Et $arg(\overline{z}) = -arg(z) = -\theta$ Donc $\overline{z} = 1e^{-i\theta}$
- 5. Par récurrence . L'initialisation est immédiate pour n=1 . Hérédité : On suppose que pour un n donné , $e^{in\theta} = (e^{i\theta})^n$, alors : $e^{i(n+1)\theta} = e^{in\theta}e^{i\theta} = (e^{i\theta})^n e^{i\theta} = (e^{i\theta})^{n+1}$
- 6. On a : $e^{i\theta} = \cos\theta + i\sin\theta$ et $e^{-i\theta} = \cos\theta i\sin\theta$. On ajoute et on obtient la première formule d'Euler. On soustrait pour la deuxième.

6