

- 1) a) Le triangle OAD est isocèle en O et $\hat{AOD} = 90^{\circ}$ donc $\hat{OAD} = 45^{\circ}$; M variant de B à D, l'angle \hat{MAB} est inférieur à l'angle \hat{OAD} donc x est dans $\left[0; \frac{p}{4}\right]$
 - b) Par le th de l'angle inscrit : $\hat{MOB} = 2\hat{MAB} = 2x$
- 2) a) AMB est un triangle rectangle en M , I est le milieu de [AM] , O est le milieu de [AB] et par le th des milieux (IO) parallèle à (MB) donc (IO) perpendiculaire à (AM) et AIO triangle rectangle en I .

b)
$$\cos x = \frac{AI}{AO} = AI$$
 car $AO = 1$; de même dans OMH rectangle en H ,

$$\cos 2x = \frac{OH}{OM} = OH \quad \text{car OM} = 1$$

c) dans AMH rectangle en H : $\cos x = \frac{AH}{AM}$ d'où AH = AM $\cos x$. Puisque AMB

rectangle en M, $\cos x = \frac{AM}{AB} = \frac{AM}{2}$ donc AM = 2 $\cos x$ et donc AH = 2 $\cos^2 x$

- 3) $\cos 2x = OH \text{ par } 2)b)$, et OH = AH 1 d'où : $\cos 2x = 2 \cos^2 x 1$
- 4) a) Dans OMH rectangle en H, $\sin 2x = \frac{MH}{OM} = MH$;

dans AMH rectangle en H , $\sin x = \frac{MH}{AM}$ donc MH = AM $\sin x$

b) MH = $\sin 2x$ = AM $\sin x$ = 2 $\cos x \sin x$

5)
$$\cos 2x = 2\cos^2 x - 1 = 2\left(\frac{\sqrt{2+\sqrt{2}}}{2}\right)^2 - 1 = \frac{2+\sqrt{2}-2}{2} = \frac{\sqrt{2}}{2}$$
; or on connaît $\cos\left(\frac{p}{4}\right) = \frac{\sqrt{2}}{2}$ donc $2x = \frac{p}{4}$ et $x = \frac{p}{8}$ rad.

Corrigé fonctions trigonométriques

6)
$$\cos 2x = 2\cos^2 x - 1 = 2\left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)^2 - 1 = \frac{8 + 2\sqrt{12} - 8}{8} = \frac{\sqrt{3}}{2} \text{ or } \cos\left(\frac{p}{6}\right) = \frac{\sqrt{3}}{2} \text{ donc}$$

$$2x = \frac{p}{6} \text{ et } x = \frac{p}{12} \text{ rad }.$$