Démonstrations fonctions

A retenir

 $\forall x \geq 1: x \leq x^2 \leq x^3$ $\forall x \in [0;1] : x^3 < x^2 < x$

Le principe

On va démontrer deux inégalités à la place d'un encadrement .

Logique

Pour montrer que $A \leq B$, on peut montrer que $A - B \leq 0$

La démonstration

Première inégalité

On va montrer que $\forall x \geq 1: x \leq x^2$ et $\forall x \in [0;1]: x^2 \leq x$

Posons $f(x) = x^2 - x$, nous allons étudier le signe de f.

f(x) = x(x-1). Dressons un tableau de signes :

X	$-\infty$		0		1		$+\infty$
X		-	0	+		+	
x-1		-		-	0	+	
f(x)		+	0	-	0	+	

On obtient en lisant le tableau, $f(x) \ge 0$ sur $]-\infty;0] \cup [1;+\infty[$ et $f(x) \le 0$ sur [0;1] Ce qui donne bien $\forall x \ge 1 : x \le x^2$ et $\forall x \in [0,1] : x^2 \le x$

Deuxième étape

On va montrer que $\forall x \geq 1: x^2 \leq x^3$ et $\forall x \in [0;1]: x^3 \leq x^2$ Posons $f(x) = x^3 - x^2$, nous allons étudier le signe de f .

 $f(x) = x^2(x-1)$. Dressons un tableau de signes :

X	$-\infty$	0		1		$+\infty$
x^2	+	0	+		+	
x-1	-		- 4	0	+	
f(x)	-	0	-	0	+	

On obtient en lisant le tableau , $f(x) \ge 0$ sur $[1; +\infty[$ et $f(x) \le 0$ sur $]-\infty; 1]$ Ce qui donne bien $\forall x \ge 1 : x^2 \le x^3$ et $\forall x \in [0, 1] : x^3 \le x^2$

13 août 2020 1 Béatrice Debord