Exercice 1 (5 points)

Pour ces cinq affirmations, entourer la bonne proposition, sans justifier votre réponse.

- 1. La droite qui passe par le sommet d'un triangle et par le milieu du côté opposé est :
 - (a) une médiane
 - (b) une hauteur
 - (c) une médiatrice
 - (d) une bissectrice
- 2. Le point d'intersection des hauteurs est :
 - (a) l'orthocentre
 - (b) le centre du cercle circonscrit
 - (c) le centre du cercle inscrit
 - (d) le centre de gravité
- 3. Dans un triangle ABC rectangle en A dont on connait AB et l'angle \widehat{B} , pour calculer BC , on utilise :
 - (a) la formule du cosinus
 - (b) la formule du sinus
 - (c) la formule de la tangente
 - (d) le théorème de Pythagore
- 4. Un quadrilatère est un rectangle si et seulement si :
 - (a) il a trois angles droits
 - (b) ses diagonales sont perpendiculaires
 - (c) ses diagonales sont de même longueur
 - (d) ses côtés sont parallèles deux à deux
- 5. Soit un triangle ABC avec I et J milieux respectifs de [AB]et [BC] . On sait que AC=8 et AB=3 , alors :
 - (a) IJ = 4
 - (b) $BC = \sqrt{73}$
 - (c) $BC = \sqrt{55}$
 - (d) IJ = 3

Exercice 2 (5 points)

Un site de vente sur internet propose une grande braderie à ses clients avec des promotions de 40~% sur tous ses articles . De plus , une remise supplémentaire de 10~% par année de fidélité est accordée aux abonnés .

Julie , cliente depuis 5 ans , a acheté une robe et a payé 74 euros . Quel était le prix initial de cette robe avant la braderie ?

Soit x le prix initial
$$x \times 0, 6 \times 0, 9^5 = 74 \iff x = 208, 87 \text{euros}$$

Exercice 3 (5 points)

On donne l'algorithme suivant :

Recopier et compléter le tableau suivant qui donne les résultats successifs de l'algorithme si on exécute algo(5)

X	30	38	46	54	62	70
i		1	2	3	4	5

Exercice 4 (5 points)

On donne
$$f(x) = (x-5)^2 - 16$$

1. Factoriser f(x)

$$f(x) = (x - 5 - 4)(x - 5 + 4) = (x - 9)(x - 1)$$

2. Développer f(x)

$$f(x) = x^2 - 10x + 9$$

3. Résoudre f(x) = 0

$$(x-9)(x-1) = 0 \iff x = 9 \text{ ou } x = 1$$

4. Résoudre f(x) = -16

$$(x-5)^2 - 16 = -16 \iff (x-5)^2 = 0 \iff x = 5$$

5. Résoudre f(x) = 9

$$x^{2} - 10x + 9 = 9 \iff x^{2} - 10x = 0 \iff x(x - 10) = 0 \iff x = 0 \text{ ou } x = 10$$