Epreuve commune mathématiques seconde Mai 2017

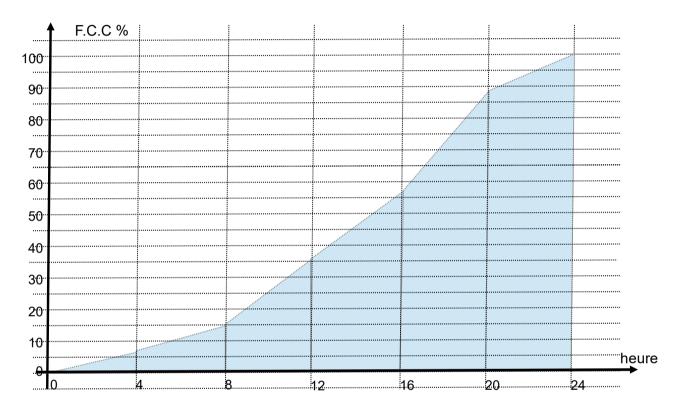
Le sujet comporte 8 pages

Les exercices 1, 2, 3, 4, 5 et 6 sont obligatoires.

L'élève devra faire l'exercice 7 version 1 **OU** l'exercice 7 version 2.

Les calculatrices sont autorisées.

L'élève doit rendre le sujet entier avec sa copie.


NOM Prénom Classe

Exercice 1 (5 points)

Le tableau suivant donne les fréquences cumulées croissantes (FCC, en %) correspondant à la répartition des accidents corporels de la route par tranche horaire de la journée.

Tranche horaire	[0;4[[4;8[[8;12[[12; 16[[16; 20[[20; 24[
F.C.C. en %	6	15	35	57	88	100

On donne également la courbe des fréquences cumulées croissantes sur le graphique ci-après.

- 1. Calculer la fréquence des accidents corporels ayant lieu entre midi et 16 h.
- 2. Déterminer graphiquement une approximation de la médiane Me et des quartiles Q1 et Q3. (On laissera sur le graphique les traits de construction.)
- **3.** Quelle est la tranche horaire la plus dangereuse ? Expliquer.
- **4.** Sachant que l'effectif total de cette série est 80309 accidents, déterminer le nombre d'accidents ayant eu lieu entre 20 h et 4 h.

Exercice 2 (7 points)

On se place dans un repère $(0; \overrightarrow{OI}, \overrightarrow{OJ})$ du plan.

On considère les points F(1; -5), G(-3; 5) et H(-1,6; 1,5).

- 1a) Montrer que les vecteurs \overrightarrow{FG} et \overrightarrow{FH} sont colinéaires.
- **b)** Que peut-on en déduire pour le point H?
- **2a)** On pose P(x;y). Calculer les coordonnées du point P tel que $\overrightarrow{FP} = \frac{3}{4}\overrightarrow{FG}$.
- b) Que peut-on dire des points F, G et P?
- 3) On note M le point de la droite (FG) qui appartient à l'axe des ordonnées.

En utilisant la colinéarité, déterminer les coordonnées (x; y) du point M.

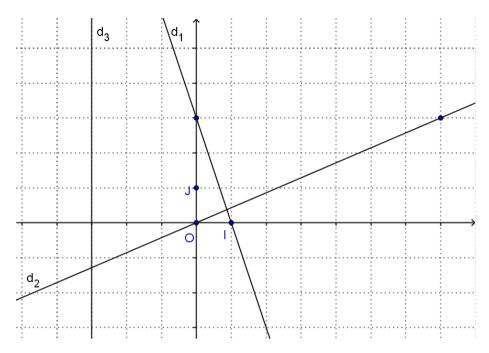
Exercice 3	(5	points)

Une campagne de prévention routière s'intéresse aux défauts constatés sur le freinage et sur l'éclairage de 400 véhicules

- * 60 des 400 véhicules présentent un défaut de freinage.
- * 140 des 400 véhicules présentent un défaut d'éclairage.
- * 40 véhicules présentent à la fois un défaut de freinage et un défaut d'éclairage.

On note A l'évènement "le véhicule présente un défaut d'éclairage"

B l'évènement "le véhicule présente un défaut de freinage"


1) Compléter le tableau suivant représentant la situation exposée:

Nombre de véhicules	Présentant un défaut de	Sans défaut de freinage	Total
	freinage		
Présentant un défaut			
d'éclairage			
Sans défaut d'éclairage			
Total			

2) Définir par une phrase l	2) Définir par une phrase les évènements:					
Ā:						
<i>A</i> ∩ <i>B</i> :						
$A \cup B$:		ninés. Quelle est la proba	oilité que:			
Le véhicule présente un dé	efaut de freinage mais pas	d'éclairage:				
Le véhicule présente les 2	défauts:		•••••			
4) On choisit un véhicule a		•	U . 1			

Exercice 4 (7 points)

On se place dans le repère orthonormé ci-dessous.

1) Donner, par lecture graphique, l'équation réduite des droites d_1 , d_2 et d_3 . On ne demande ici aucune justification mais on attend des résultats exacts, les valeurs approchées ne seront pas acceptées.

Equation de d₁:....

Equation de d₂:.....

Equation de d₃:....

- 2) Tracer sur le même graphique les droites D: y = 2x + 3 et D': y = -x + 1. (Il n'est pas nécessaire de justifier la construction).
- 3) On considère le point P(-12; -21). Le point P appartient-il à la droite D? Justifier par un calcul.
- 4a) Expliquer pourquoi les droites D et D' sont sécantes.
- b) Déterminer, par le calcul, les coordonnées du point M intersection des droites D et D'.
- 5) On considère les points A(-1; 4) et B(1; -2).
- a) Déterminer, par le calcul, l'équation réduite de la droite (AB).
- b) On note K le point de coordonnées (0; 3). Démontrer que le quadrilatère ABIK est un trapèze.

(6 points) Exercice 5

On a étudié l'évolution du taux d'alcoolémie dans le sang d'une certaine personne à jeun (exprimé en grammes d'alcool par litre de sang) pendant les neuf heures suivant l'absorption d'une certaine quantité d'alcool. On donne ci-dessous, la courbe (C) représentant cette évolution.

On rappelle qu'une heure vaut 60 minutes et que « boire ou conduire , il faut choisir »

Partie A: lectures graphiques

1)	C	Quand atteint-on	le taux	maximal?	•)
----	---	------------------	---------	----------	---	-------

Oue vaut-il?....

4) Le taux d'alcoolémie autorisé au volant est 0,5 g/l ; dire quand cette personne ne peut pas conduire sous peine d'être verbalisée

Partie B: quelques calculs

On admet que la courbe (C) est la courbe représentative de la fonction f définie sur [0;12] par :

$$\begin{cases} si \ x \in [0; 1] \ alors \ f(x) = -1,6x^2 + 3,2x \\ si \ x \in [1; 12] \ alors \ f(x) = -0,15x + 1,75 \end{cases}$$

1) Calculer l'image de 0,5 et interpréter le résultat

2) Combien faut-il attendre de temps pour qu'il n'y ait plus aucune trace d'alcool dans le sang?

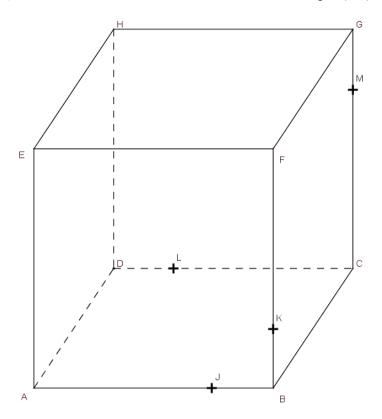
Exercice 6 (5 points)

(° P ········		
1) On considère l'algorithme ci-contre: Si on exécute ce premier algorithme en prenant a= - 1, quelle est la valeur affichée? La valeur affichée est :	Variable a: nombre Traitement Entrer a si a> 0 alors a prend la valeur -a + 1 sinon a prend la valeur a² Fin si Sortie Afficher a Fin	
 2) On considère l'algorithme ci-contre: On exécute cet algorithme en prenant n = 3 et a = 5, quelle est la valeur affichée? La valeur affichée est :	Variable a, n, i : nombres Traitement Entrer a n prend la valeur 3 Pour i allant de 1 à n Faire: a prend la valeur a*3 Fin Pour Sortie Afficher a Fin	
affiche en sortie le plus grand des 2 nombres a et b:	Variable a,b: nombres Traitement Entrer a Entrer b Si alors sinon Fin Si	

4) Voici un algorithme

Variables N,P,S: nombres
Initialisation
S prend la valeur 0

Traitement
Choisir un nombre P
Choisir un entier N
Pour i allant de 1 à N faire:
P prend la valeur 0,5P+20
S prend la valeur S+P
Fin de Pour

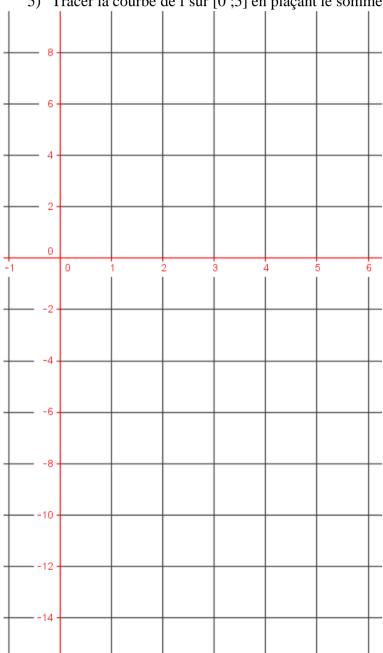

Sortie
afficher le couple (N,P)
Fin

Tester cet algorithme en prenant P=10000 et N=4, on remplira le tableau suivant:

	N	P	S	I
Initialisation				
Traitement				
Sortie		·	·	

Exercice 7 version 1 (5 points)

Ci-dessous une représentation en perspective cavalière d'un cube ABCDEFGH de 4cm d'arête. On note J, K, L et M les points des segments [AB], [BF], [CD] et [CG], respectivement, tels que BJ = BK = 1cm et CL = CM = 3cm. On admet que (AF) et (GD) sont parallèles .


- 1) a) Montrer que (JK) et (AF) sont parallèles
 - b) Montrer que (LM) et (GD) sont parallèles
 - c) En déduire que (JK) et (LM) sont parallèles .
- 2) En déduire que les points *J*, *K*, *L* et *M* sont coplanaires.
- 3) a) On note I le point d'intersection de (LJ) et (KM). Placer I.
 - b) L'intersection des plans (ADB) et (GCF) est
 - c) En déduire que $I \in (BC)$.
 - d) Calculer BI. On pourra travailler dans ILC.
- 4) Calculer l'aire du trapèze ADLJ.

Exercice 7 version 2 (5 points)
On donne la fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 15x - 12$

- 1) Montrer que : $f(x) = -3\left(x \frac{5}{2}\right)^2 + \frac{27}{4}$
- 2) Montrer que : f(x) = 3(x-1)(-x+4)
- 3) Résoudre par le calcul: $f(x) \le 0$
- 4) Dresser le tableau de variations de f sur [0;5]

X	
f(x)	

5) Tracer la courbe de f sur [0;5] en plaçant le sommet.

