Exercice 1 6 points

Tableau: 1 point

	Noix	Noisettes	Total
Consommation immédiate	45	50	95
Réserve	350	150	500
Total	395	200	595

 $A \cap B$: « le fruit est une noix de la réserve » 1 point

 \bar{B} : « le fruit est pour la consommation immédiate » 1 point

$$p(A) = \frac{395}{595} = \frac{79}{119} \approx 0.66$$
; $p(B) = \frac{500}{595} = \frac{100}{119} \approx 0.84$; $p(A \cap B) = \frac{350}{595} = \frac{10}{17} = 0.59$

1,5 points

$$p(A \cup B) + p(A \cap B) = p(A) + p(B) \ donc \ p(A \cup B) = \frac{395 + 500 - 350}{595} = \frac{545}{595} = \frac{109}{119}$$
$$= 0.91 : 1 \ point$$

3) On a:

$$p = \frac{150}{500} = \frac{3}{10} = 0.3$$
; 0,5 point

Exercice 2 8 points

1)
$$(2x-6)(5-x) = 10x - 2x^2 - 30 + 6x = -2x^2 + 16x - 30 = f(x)$$
 1 point

2) On a :
$$f(0) = -30$$
 0,5 point

3)
$$f(x) = -30 \text{ si } -2x^2 + 16x - 30 = -30 \text{ si } -2x^2 + 16x = 0 \text{ si } 2x(-x+8) = 0 \text{ donc}$$

x = 0 ou x = 8. Les antécédents de -30 sont donc 0 et 8 1 point

4) Cela revient à résoudre : $(2x - 6)(5 - x) \ge 0$

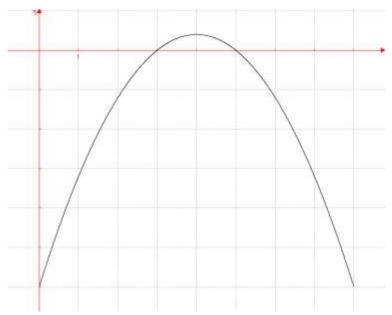
X		3		5	
2x - 6		0	+		+
5 – x	+		+	0	-
f(x)	-	0	+	0	-

S = [3;5] 1 point

5) tableau : 0,5 point

х	0	1	2	3	4	5	6	7	8
f(x)	-30	-16	-6	0	2	0	-6	-16	-30

6) courbe: 1 point



- 7) S = [1,5;6,5] *l point*
- 8) Les antécédents de 20 sont : 0,8 et 7,2 1 point
- 9) Tableau de variations : 1 point

X	0 4	8
f(x)	2	
	-30	-30

Exercice 3 6 points

$$\frac{1}{1}(x-5)(x-117) = x^2 - 5x - 117x + 585 = x^2 - 122x + 585$$

1 point

2) On doit donc résoudre : (x - 5)(x - 117) < 0

X		5		117		
x-5	-	0	+		+	
x-117	-		-	0	+	
(x-5)(x-117)	+	0	-	0	+	
117)						

$$S =]5;117[$$
 2 points

3) Soit x la longueur du champ et soit y la largeur , alors : 2x + 2y = 260 donc y = 130 - x (x + 5) (y - 3) > 1220 donc (x + 5) (130 - x - 3) > 1220 donc (x + 5)(127 -x) > 1220 Ce qui donne :

$$-x^2 - 122x + 635 > 1220 \ donc \ x^2 + 122x + 585 < 0$$

Par la question 2), la longueur du champ doit donc être comprise entre 5 et 117 mètres . *3 points*