Corrigé DM nº 12 loups

1)
$$(2x+1)(x-7) = 2x^2 + x - 14x - 7 = 2x^2 - 13x - 7 = f(x)$$

2)
$$2\left(x - \frac{13}{4}\right)^2 - \frac{225}{8} = 2\left(x^2 - \frac{13}{2}x + \frac{169}{16}\right) - \frac{225}{8} = 2x^2 - 13x - 7 = f(x)$$

- 3) On doit calculer f(0) = -7; le point d'intersection avec l'axe des ordonnées est donc (0;-7)
- 4) On doit résoudre f(x) = 0 c'est-à-dire (2x+1)(x-7) = 0 donc les points d'intersection avec l'axe des abscisses sont (-0.5;0) et (7;0)
- 5) On doit résoudre f(x) = -7 c'est-à-dire $2x^2-13x-7=-7$ ou $2x^2-13x=0$ c'est-à-dire x(2x-13)=0 donc x=0 ou x=6.5
- 6) En utilisant la forme canonique , f admet un minimum pour x=13/4 et ce minimum vaut -225/8
- 7) Tableau de variations :

X		13/4	
f(x)	/		
		-225/8	

8)
$$(2x+1)(x-7) > 0$$

	X		-0,5		7	
	2x+1	1	0	+		+
ſ	x - 7	-		-	0	+
	f(x)	+	0	-	0	+

$$S =]-\infty; -0.5[\cup]7; +\infty[$$